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Abstract. The S matrix problem for the Yukawa potential is studied. The radial 
Schrodinger equation is Laplace transformed into a retarded ordinary differential equa- 
tion (RODE). As a consequence of an asymptotic treatment it is shown that SI is related 
exactly to the values of the transformed function at I +  1 points on the complex plane. The 
treatment of the RODE by means of a conuergenr numerical scheme permits an estimate of 
Sl to any order of precision. 

1. Introduction 

For the Yukawa potential scattering problem it is known that the bounded solution of 
the pertinent Schrodinger equation: 

exp(-r/a) 1(1+ 1) 
m + ( k 2 + A  dr2 1 --)u(r)=o, r2 r > 0 ,  

has the asymptotic property: 

u ( r )=A s in(kr -bh+&)+o( l )  for r + +W.  (1.2) 

Here Sl=exp(2i&) is usually referred to as the ‘S matrix’ and al as the ‘phase shift’ 
(Newton 1966). In the literature (Hulthbn 1944, Gerjouy and Saxon 1954, Mower 
1955, Swan 1960a, b, Wojtczak 1963) approximate methods and numerical schemes 
have appeared which concern the evaluation of the phase shifts or of related quan- 
tities. In this paper we present an exact procedure for the computation of Sr and SI: 
more precisely, with the help of a Laplace transform procedure we construct a 
numerical scheme (with step size h )  which is convergent to SI for h +O+ for each 
choice of k, A, a, 1 (with k > 0, A > 0,  a > 0, I non-negative integer). Our treatment 
hinges on the fundamental properties which connect the behaviour of a function y(5) 
for 6 + +a with the behaviour of its Laplace transform, 

co 

~*(s)=z[Y(5)1 = J exp(-st)y(t) dt ,  
0 

in the neighbourhood of its rightmost complex-plane singularities. Appendix 1 is 
devoted-following Doetsch ( 1 9 5 5 b t o  a precise formulation of these properties. 
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Martin (1959, 1960) has employed the Laplace transform procedure to study the 
analyticity properties of S1 as a function of k .  However, as far as we know, integral 
transform methods have not been applied to the problem of the actual evaluation of 
the S matrix for the Yukawa potential. As a matter of fact, in the extensive literature 
which concerns quantum mechanical problems and the Schrodinger equation, the 
integral transform method has not been used with great frequency. This is remarkable 
since the technique provides reliable and reasonably simple computational proce- 
dures?. It has been recommended and employed by Schrodinger himself in his first 
paper on wave mechanicst. In the late 1940s the integral transform method has been 
applied to several problems in quantum mechanics by Kallmann and Pasler (1949a, b, 
1950, and references quoted therein). Finally Doetsch has reconsidered the relevant 
case of the hydrogen atom in his landmark Handbuch (Doetsch 1955, 09 7.3 and 
15.3). 

As coauthor of a recent paper (Paiano and Picca 1975) one of us has employed a 
Laplace transform procedure to treat the S matrix problem for the exponential and 
the Yukawa potentials in s-partial wave (1 = 0). The present paper treats the case of 
the Yukawa potentitial for integer IS 0. We wish to mention that Paiano and Piccccca 
(1975) study the asymptotic behaviour of the wavefunction for r + fa  by an appro- 
priate deformation on the complex plane of the integration path for the inverse 
transformation. In the present paper simpler results are obtained explicitly by exploit- 
ing a connection theorem (from Doetsch 1955) between the asymptotic behaviours. 
The theorem is quoted in appendix 1. In agreement with recommendations by 
Doetsch (1955, Lit. hist. Nachweise Nos 68, 172, 175, 176) we have made an effort 
not to rely simply on a formal (heuristic) analysis but rather to establish our asymp- 
totic results on the basis of a rigorous treatment. Unfortunately this has required a 
somewhat cumbersome procedure. However the detailed treatment presented here- 
aside from being the required mathematical justification for the results that concern 
the Yukawa potential-will also be employed in future work for the treatment of 
problems involving other choices of the potential (such as, e.g., the case of the 
superposition of exponential and Yukawa potentials). 

The contents of the paper are organised as follows. In § 2 the S matrix problem is 
formulated. After a change of variables and after Laplace transforming, a difference- 
differential equation on the half-plane {Re@)> 0)  is obtained which in turn is 
equivalent to a Volterra integral equation. After an analytical continuation of j ( s )  = 
=Y[5-‘”’’u(5)] (where 5 = r / a )  on the strip (-1 < R e ( s ) s  0) the behaviour of y* in the 
neighbourhood of its rightmost singular points, s = iko, s = -iko (where ko = k a )  is 
studied and the pertinent parameters are examined: it is shown that they are related to 
a linear combination of y* and its first 1 derivatives evaluated at iko+ 1;  in turn these 
quantities can be expressed as linear combinations of y*(iko+ l ) ,  y*(ik0+2). . . y^(iko+ 
I +  1). Then theorem 2 of appendix 1 can be applied to evaluate the S matrix, In 0 3 
the problem of the calculation of f(iko+R)(R = 1,2,  . . . , I +  1) is then tackled. We 
t ‘Bei der Anwendung der 2’-Traaransformation auf Differentialgleichungen erhalt man oft 2-Trans-  
formierte, deren Originalfunktionen F ( t )  nicht bekannt, d.h. nicht durch klassische Funktionen darstelibar 
sind. In solchen Fallen ist die asymptotische Enhvicklung oft das einzige Mittel, um iiberhaupt etwas iiber F ( t )  
aussagen zu konnen (Doetsch 1955, p. 172). 
$ ‘Die Integraldarstellung gestattet nicht nur, das asymptotische Verhalten der Gesamtheit von Losungen, 
wenn r in bestimmter Weise ins Unendliche geht, zu iiberlicken, sondern auch, dieses Verhalten fur eine 
bestimmte L2sung anzugeben, was immer vie1 schwieriger ist’ (Schrodinger 1926, reprinted in Schrodinger 
1928, 1963). 

Here Schrodinger indicates with ‘Integraldarstellung’ the inverse transformation integral. 
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find that y* obeys a retarded oidinary differential equation for which, after an appro- 
priate change of variables, the numerical procedure of Feldstein (1964) can be applied 
(the same procedure has been applied by Paiano and Picca 1975). In 0 4 the results 
are summarised and a comparison is made between the 'exact' values for phase shifts 
and cross sections and the corresponding estimates which have appeared in the 
literature. As we mentioned appendix 1 is devoted to a summary of the pertinent 
results from the asymptotic theory of the Laplace transformation. Appendix 2 sum- 
marises Feldstein's treatment, which is still unpublished. 

2. The analytical treatment 

2.1. Problem statement 

After the change of variables 5 = r/a, ko = ka, A. =ha and y = t-('+%, we can formu- 
late the Yukawa potential problem (equations ( l . l ) ,  (1.2) above) as follows: seek a 
function y such that 

( 2 . 1 ~ )  

Y E C"((0, +CO), R) (2.16) 

SUP{l5'+'Y (511 : 5 E (0 ,  " < +a3 (2.lc) 

(2.ld) 

The following proposition summarises well known results (Newton 1966, § 11.1, Olver 
1974, chap. 12, P 6.1, Coppel 1965). 

Y(O+) = y o  E R -{o}.  

Proposition 1. For assigned values of Ao, ko, yo, I (with A o > O ;  ko>O; y o €  R-{o}; I 
non-negative integer) problem 1 admits the unique solution 

5 E (0, +Q)), (2.2) 
R-0 

where 

ao= 1 ( 2 . 3 ~ )  

(2.3b) 

The series which appear on the right-hand sides of equations (2.2) and (2.4b) have 
unbounded radii of convergence. Moreover, on the set [0, T) X (R - (0)) there is an 
unique pair (61, A )  such that, if we let 

U,@) = $A[exp{i[ ko5 + SI - $(I+ 1 )TI} + exp{-i[kot + SI - $(I+ l).rr]}D 

= A sin(ko[ + SI - $IT), (2.5) 



1700 G Paiano and S L Paveri Fontana 

( 2 . 6 ~ )  

Here A, SI may depend on Ao, ko, I; but they are independent of 5 and yo. Finally, 
positive parameters KO, K1, K 2  exist such that 

( 2 . 7 ~ )  

(2.7b) 

( 2 . 7 ~ )  

IY O w 0  = SUP{lY (t)l : 5 E (0, +a))) < +a), 
IYOIKI = sup{Idy/d51: 6 E (0, +a)} < +CO, 

lyolK2 = sup{ld2y/dt21 : 6 E (0, +a)} < +CO. 

The main purpose of this paper is the evaluation of the ‘S matrix’, i.e. 

S/ = exp(2ial) (2.8) 

as a function of ko, ,io, 1. We shall also provide an estimate for the ‘error term’, 
y( . f ) -~ - ( l+ouw( t ) ,  as Z-, +m. Remembering that the parameters A, SI to be 
computed are y o  independent, we find it convenient to let 

y o  = -1/(2l+ 1). (2.9) 

2.2. The Laplace transformed problem 

On account of equations (2.5), (2.la), (2.7a), (2.6a) we can claim that the Laplace 
integral 

W 

= 3 T Y  ( 0 1  = I exP(-soY (5)  d 5  (2.10) 
0 

converges absolutely to an analytic function for Re(s) > 0; does not exist for Re@) s 0. 
since y is real valued, the reflection principle 

W) = y”(s>, Re@) > 0, (2.11) 

holds (here a bar denotes complex conjugation). Moreover, on account of equations 
(2.lb), ( 2 . 1 4 ,  ( 2 . 7 ~ )  and (2.7b),  integrating by parts we find 

d W 

Isy (̂s)/ / Y O 1  + 11 exp(-s5) ;iF Y(5) dt l  c I Y O l (  1 +?). Re(s)a.p > 0. (2.12) 
0 

Finally, integrating by parts and making use of equation (2.ld), (2.7), we find: 
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a=P(-OY ([)I = ŷ (s + I), Re(s) > - 1. 

Then we can claim that the Laplace transform (2.10) of the unique solution y of 
equations (2.1), (2.9) is a solution of the problem 

y^(s)= l+AOy^(s+l), Re(s) > 0, ( 2 . 1 3 ~ )  

Vp > 0: (2.136) 

y^(s) analytic on {Re(s) > 0)  (2 .13~)  

where (2.136) is a consequence of equation (2.12). For the time being we do not claim 
that y^ = 2 [ y ]  is the unique solution of problem (2.13). Now we observe that equation 
(2.13a) can be written in the equivalent forms 

y^(s) = O(s-'), for Is1 + ~ Z + C D ,  uniformly on {Re(s) 3 p }  

(2.14) 

and 

y^(Y+iW) f ( y +  1 +iw) '+I 1 + A ~ ~ ^ ( T +  1 +iw) 
[ ( y + i ~ ) ~ + k : ] ' = [ ( y + l + i w ) ~ + k : ] ' - / ~  [ ( ~ + i w ) ~ + k i ] ' + '  d7' 

with y E (0, +a) and w E R .  

(2.15) 

Moreover we observe that if we let 

then the difference-differential equation ( 2 . 1 3 ~ )  yields 

1+2I~y^(s)+Aoy^(s+ 1) 
D'y^(s) = , Re(s) > 0, s2 + k i  

(2.16) 

( 2 . 1 7 ~ )  

[2s(l- R + l)DR-' + (R - 1)(21- R + 2)DR-2]y^(~)+ AoDR-'y^(s + 1) 
s2 + k i  

DRy^(s) = 

Re(s)>O, R ~ { 2 , 3 , .  . .}, (2.176) 

so that, as a consequence of equation (2.13b), 

DRy^(s) = O ( S - ~ - ' ) ,  for IS I++CD on{Re(s)Sp}. (2 .174 

Finally we find that any function y which satisfies equations (2.13) is a solution of the 
Volterra problem 

y E (0, +a), w E R. (2.186) 

Since the kernel in ( 2 . 1 8 ~ )  is of class L2, a classical result (Courant and Hilbert 1953, 
chap. 3, § 9, Pogorzelski 1966, chap. 2, 00  1 and 6) guarantees that ( 2 . 1 8 ~ )  admits an 
unique solution of class (2.186). Since uniqueness for problem (2.18) implies 
uniqueness for problem (2.13) we can claim the following proposition. 
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Proposition 2. The Laplace transform 9 of the unique solution of equation (2.1), (2.9) 
is the unique solution of equations (2.13) on the half-plane {Re(s)> 0). 

In 0 3 we shall actually employ equation (2.14) to evaluate y^. In this section we are 
interested in establishing a connection between the behaviour of y for 6 +CO and the 
behaviour of y^ on the neighbourhood of its rightmost singularities. The treatment 
which follows is related to theorem 2 of appendix 1. Actually the use of theorem 1 
would be much simpler. However, for our problem assumption (A.4) would require 
an ‘error’ of order O(exp(-Ee)) with E > 0, whereas result (2 .6aFwhich is taken from 
the literature-exhibits an ‘error’ estimate of order O(6-l-I) which is not sharp 
enough. 
2.3. The analytic continuation of 9 and ifs asymptotic behaviour for s + iko and s + 
-iko 

The following pertinent result is a direct consequence of the properties of poles for 
analytic functions. 

Proposition 3. The function 8 = (s2 + k~”‘“’’(l+ Aoy (̂s + 1)) admits the Laurent 
expansions 

m 

on C, ={s E @: O <  1s -ikol< b},  

, onC-={sE@:O<Is+ikol<b}, 

R - ( / + l )  e ( s ) =  1 CR(S-ikO) 

e ( s ) =  C cR(s+iko) 

R=O 

m 
R - ( l + l )  

R=O 

where b = min(l,2ko} and 

1 l+hog(S+1) cR = - lim (A) R! s - d c o  ds (s +iko)‘+l ’ 
(2.19) 

Then, as a consequence of equation (2.14) we can claim m that 

ImIsl  I 
-L  -3 -2 -1 

Figure 1. Complex plane analysis of the function 9. For the analytically continued 
function 9, r+ and r- are branch cuts and the points iko, iko- 1 ,  iko- 2 , .  . . , -iko, -iko- 
1 , .  . . are the branch points. The radius 6 of the open circles C+ and C- is the smallest 
number among 2ko and 1. The expansions (2.25) hold on C+-T+ and C-4-  respectively. 
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Hence term-by-term integration yields the representation 

y^(s) = (s + iko)' 1 w ~ ( s  - iko)R + (s2 + k i ) ' q  ln(s - iko) 
m 

R =O  

(2.20a) 

where wR = cR/(R - I )  (for R # I ) ;  where 
where we require ln(p) E R for p > 0. Moreover, the symmetric result 

is an appropriate complex parameter; and 

00 1 

R=O "=O 
= (s -iko)' C * R ( S  +iko)R +Z' ln(s +iko) ()(-2iko)'-'(s +iko)"" 

(2.206) 

is also valid, for s E W- = C- n{Re(s)>O}. On account of equation (2.19), equations 
(2.20) establish a connection between the properties of y* in the neighbourhood of the 
singularities iko, -ikO and its behaviour in the neighbourhood of the regular points 
iko+ 1, -iko+ 1. Moreover on the right-hand sides of equations (2.20) a regular 
contribution (which admits a power series representation) and a singular logarithmic 
contribution can be identified; then a comparison of equations (2.20) with equation 
(A.l) shows that in the neighbourhood of iko, -iko, y^ admits an asymptotic represen- 
tation of class (A.3) with j = 2  provided Re(s)>O. Now we consider an analytic 
continuation of y^ on the imaginary axis and on the left half-plane. The presence of the 
logarithmic term in equations (2.20) suggests that branch cuts should be introduced 
before attempting the continuation. It is convenient to select the symmetric cuts 

r+ = {s E @: Im(s) = +ko and Re(s )c  0}, 

r- = {s E C:  Im(s) = -ko and Re(s) s 0). 

Now we claim the following proposition. 

Proposition 4.  Let 

SI = {s E C :  -1 < Re(s) d 0) - (r, U r-) = {s E @: - 1 < Re(s) s 0 and IIm(s)l# ko} .  

Then continuation of y  ̂ on SI obeys equations (2.11), (2.13a), (2.14), (2.15), (2.17)on 
S1 U {Re(s) > 0} and it  admits representation (2.20) on the circles C+ - r+ and C- - I?-. 

The proof of this proposition can be organised as follows: first we observe that 
equation (2.15) indeed defines an analytic function on S1 which is a continuation of y^ 
and which obeys equations (2.11), (2.13a), (2.14), (2.17) on S1; next identity 
theorems can be used to guarantee uniqueness of the analytic continuation on SI; 
finally the latter property and the set of arguments which led to equations (2.20) can 
be employed to extend the validity of equations (2.20) on C+ - r+ and C- - r-. 
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2.4. Asymptotic properties 

In connection with equations (2.20) and (A.l), let 

g(s) = ~ ( s > -  cl ln(s -iko) 
‘ I  ( )(2ik0)l-~(s - iko)l+u 

u = o  v 

(2.21) 

Here 6 is of class (A.5) with: 

a =o;  j = 2 ;  s1 = iko; sa = -iko, 

@ = I ;  n = l ;  cuI = Fw = cl( L)(2iko)‘-”, (v E (0, 1,2 ,  . . . , I}). 

We want to verify that all the assumptions of theorem 2 of appendix 1 are satisfied. 
First we observe that assumption (a)  is satisfied with a = 0 and (b) is satisfied owing to 
the fact that proposition 4 extends the validity of equation ( 2 . 1 7 ~ )  to s E S1. Next we 
observe that if we set p = 1 in equation (2.12) we can claim that 

for y E [l, +CO] and U E R. I Y O I  

lo I Iy(y +iw)I s - (K1+ 1) 

Then, as a consequence of equation (2.15) 

Hence F(s)+ 0 uniformly for Is) + +CO on the strip (0 s Re(s)S l}, and assumption (c) 
is satisfied. Now let us study the function 6 defined by equation (2.21). It is easy to 
show that 6 is analytic on the whole half-plane (Re(s)> -l}; hence it is continuous 
and admits complex derivatives of all orders there. Requirements (d) and (e) are thus 
met. Then as a consequence of theorem 2 of appendix 1 we have the main asymptotic 
result given by the following proposition. 

Proposition 5. The unique solution of equations (2.1), (2.9) admits the asymptotic 
representation 

( 2 . 2 2 ~ )  

for 6 + +CO, where p is any positive parameter and where cl is given by equation 
(2.19). 
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Equation ( 2 . 2 2 ~ )  can be written in the equivalent form 

x sin[kot - 3(1+ V)T + arg(c1) - ;TI+ o ( ~ ' ) ,  for [+ +CO, (2.22b) 

where, applying the binomial rule to equation (2.19) and employing notation (2.16): 

= (2ilcO)-'-'[ ( -1-1 )(2iko)-'[l+Aoy^(iko+ l ) ]  

(2.23) 

Results (2.22) exhibit the asymptotic behaviour of y([) for [++CO. Employing 
equation (2.15) we find that they are improved versions of the classical results (2 .5) ,  
( 2 . 6 ~ ) .  Moreover, as a consequence of equation (2.8), for the S matrix we have 

(2.24) SI = exp{2i[arg(cl)-i.rr]} = -cl/?'. 

2.5. Comments 

Now consider the particular case A. = 0,la 0, ko > 0 (physically it corresponds to a 
free particle). Then problem (2.1) with condition (2.9) has the solution (Abramowitz 
and Stegun 1964, 0 10) 

(2.25) 

After some algebraic manipulations we find that results (2.22), which have been 
obtained subject to the assumption A o > O ,  actually yield result (2.25) in the limit 
A. + O', with the error term (of order o([- ')  with p > 0) actually equal to zero. This 
corroborates our results. The presence of the Yukawa potential ( A o >  0) affects 
the 1 + 1 sinusoidal contributions to the wavefunction (which vanish as [-" with 
v E (0 ,  1,2 ,  . . . , I} for [+ +CO) by multiplying all the amplitudes by the factor 

where CI obeys equation (2.23), and by adding to the arguments of the sine functions 
the phase shift arg(cI). Moreover, the presence of the Yukawa potential introduces a 
contribution which vanishes for [ + +CO faster than any law [-'(p > 0). 

We conclude this section by observing that our treatment can be extended to the 
study of the above mentioned additional contribution. For A. > 0 repeating the 
analysis of 0 2.3 to the left of Re(s)= -1 we find that y* admits an analytical 
continuation on {Re(s) =s 0} - (r+ U r-) with branch-points at iko - R, -iKo- R 
(RE{O,  1 , 2 , .  . .}). Hence the error term in equations (2.22) is of order 
exp(-() sin(& + 4). Of course this contribution does not appear if A. = 0. 
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3. The numerical treatment 

3.1. The expression of &in  termsof y^(iko+R) forR ~ { 1 , 2 , .  . . , Z+1} 

Equations (2.23), (2.24) permit the evaluation of S,  provided y  ̂ and its first 1 deriva- 
tives are known at iko+ 1. Since equations (2.16), (2.17) can be combined recursively 
to construct an algorithm for the evaluation of DRy^(iko+ 1) in terms of y^(iko+ 
l), 9(iko+2). . . y^(iko+ R + l),  it is clear that cI  can be computed as a linear combina- 
tion of y^(iko+ 1) .  . , y^(iko+ 1 + 1). The following diagram sketches the procedure for 
the computation of DRy^(iko+ 1)(R E {1,2, . . . ,1}):  

y^(iko , / 1 + 7 0 + 3 )  + 1) . . . y^(iko+ 1 + 1) 

b k r >  y^'(iko + 2) . . .  y^'(iko + 1 )  

y^"(iko+ 1) . . . y^"(ikO + 1 - 1) 

y*"'(iko + 1) 

3.2. Numerical evaluation of y^(iko+ t )  

We want to study equation (2.14) on the half-line {s = t +iko: t E [ l ,  +CO)}. After the 
change of variables 

equations (2.14), (2.13b) can be written in the form 

(3. la)  

(3.lb) 

X 
CY(X)=- x E (0, 11. ( 3 . 1 ~ )  

x + l '  

Since a(x)= x for x = 0, this is a typical RODE problem to which considerable 
attention has been devoted in the mathematical literature. In particular Feldstein 
(1964) has proved that under stuitable conditions Euler's scheme converges uniformly 
to the unique solution of the problem. 

In appendix 2 Feldstein's results are summarised and the customary Euler's 
scheme is described. 
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m m m  
“N 
“N 
e b b  
0 0 0  
0 0  + + +  
r - m m  
m m m  c c 3  
2 2 2  
o o o  

I l l  

X b b b  
- 0 0 0  6 2 0 0  + + + +  

o o o c  
/ I / /  

w m m m  m m m m  
m f f i m m  
N“N 
0 3 0 0  
o s 0 0  + + + +  
m r - m m  
r - \ o \ o \ o  
““ m m m m  

o c a -  “ r?N 
I I I T  

r? m m 
“N 
- - c  
m “  
0 - 0  2 6 2  + + +  

+ +  I + +  
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a m a 
v? - 
/I 
U .. m v, 
a 
v? 
II 
c 

< 
.- ?D 

B 

W 
+ 

x 
m 

o ~ o o o o  

m o \ D m  
m 3 W N  
N - O W  
- * w *  
0 0 0 "  
0 0 0 0  

N - t - W a  m o a t - r -  m " m N  
o m - m -  

0 0 0 0 0  
? ? " " ?  

m m m i n o t -  
- N o w o m  
O N O W - "  
C O - - "  
o o c c o o  

m m 
N 

C 
? 

caoa* b m m m  
- * t - -  
O O ? ?  
0 0 0 0  

o m m t - -  
W W Q N *  o m - a -  
0 0 - l - m  
o o o o o  

- m o - m  
- d N * *  c - d r - m  
0 0 0 0 0  
? ? ? ? ?  

0 
2 z 

W W  
w -  
? +  
0 0  

r - m a p m  

O ? ? ? ?  
m o m  a 
o m - c a t -  

0 0 0 0 0  
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It is easy to show that problem (3.1) meets the requirements of the theorem quoted 
in appendix 2 so that Euler’s scheme converges uniformly on [0,1]. It is a first-order 
algorithm (that is, the error is proportional to the step size h). However, if Richardson’s 
extrapolation procedure is applied m times the computational scheme becomes of 
order hlCm (Henrici 1962, Feldstein 1964). 

The code YUKAL (which has been run on the IBM 370/158 of the CSATA 
laboratories, Bari) employs the Euler scheme to evaluate the numerical values of 9. 
Table 1 exhibits the convergence properties of the scheme. Moreover, the code treats 
the numerical values of 9 at iko + 1, . . . , iko+ 1 + 1 according to the procedures of 0 3.1 
and evaluates C I ,  SI, SI. 

4. Numerical comparisons 

Here we wish to compare our results with the corresponding results that have 
appeared in the literature. We have found remarkable agreement between our 
numerical estimates and those obtained in an early treatment (Hulthkn 1944) in which 
a variational principle is employed for the calculation of the phase shift SI. For 1 = 0, 
ko= 0.8 and: (i) A. = 1.5; (ii) A. = 2.1; Hdlthbn obtains: (i) So = 0.83708 . . ; (ii) 
So = 1.275 15 . . ; and claims that the error ‘probably does not exceed a couple of units 
in the fifth decimal’. We find the exact results: (i) S0=0.83708. . ; (ii) So = 
1.27516..  . 

Our results are displayed together with estimates based on the numerical integra- 
tion of the Schrodinger equation in tables 2, 3, 4. As a consequence of partial wave 

Table 3. Comparison with the numerical integration of Gerjouy and Saxon (1954). 
Potential function V = -A[exp(-r/a)]/r; a = 1.35 x cm; Aa = 2.365; ko = ka. The 
differential cross section is given in units of a’, the total cross section in units of ra2. 

Differential cross section Total cross section 

ko Angle Our results Gerjouy and Our results Gerjouy and 
Saxon (1954) Saxon (1954) 

0 4.083 3.99 
0.6630 ~ / 2  2.282 2.28 

P 2.292 2.27 

0 4.795 4.58 
1.048 a/ 2 0.7534 0.752 

P 0.5105 0.531 

0 5.140 5.07 
1.406 71.1 2 0.3085 0.309 

P 0.1506 0.151 

0 5.255 5.25 

P 0.0796 

0 5.312 5.31 
1.816 PI2 0.1272 0.127 

P 0.0482 0.048 

1.624 a/ 2 0.1894 0.190 

10.09 10.1 

4.540 4.53 

2.645 2.64 

2.015 2.01 

1.628 1.63 



1710 G Paiano and S L Paveri Fontana 

Table 4. Comparison with the numerical integration of Mower (1955). Potential function 
V = -A [exp(-r/a)]/r; a = ;ao; A0 = Aa = 5.84; ko = ka = 0.72. Here a. is the first Bohr 
radius. The differential cross section is given in units of a*.  

Phase shifts Differential cross section 

80 81 8 2  8 3  0 a12 71 

Our results 3.280 0.8844 0.1083 0.0225 2.477 0.00370 1.033 
Mower (1955) 3.28 0.888 0.110 0.021 2.41 0,005 1.05 

analysis, 

is the differential cross section, where 9 is the Legendre polynomial of degree 1. 
Finally for the total cross section, one has 

47l 
k U = 5 dR = 7 Im(f(0)) 

where the so called optical theorem has been used. 

5. Conclusions 

The Laplace transform a5 a technique of asymptotic analysis has been applied to a 
specific scattering problem to derive a numerical scheme for the computation of the S 
matrix. 

The authors feel that the main features of the treatment presented here are the 
following: 

(i) Theorems which connect the asymptotic parameters of the transform with the 
asymptotic parameters of the wavefunction in an exact way are exploited in a compu- 
tationally convenient form. 

(ii) The convergent numerical scheme which is employed permits the evaluation of 
the relevant parameters as precisely as desired. 
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Appendix 1. Some Abelian asymptotic theorems 

In this appendix we summarise-after some minor adjustments-some results from 
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Doetsch (1955, in German). Under the assumption that the Laplace transform 
+m 

fo> = a f l =  I exp(-st)f(t) d t  
0 

has a finite abscissa of convergence a and that it has a finite number m of singularities 
on the vertical line {Re($) = a}, we shall connect the asymptotic behaviour of f ( s )  in 
the neighbourhood of the singularities with the asymptotic behaviour of f(5) for 
.$++CO. 

Suppose that f admits an analytic continuation on {Re(s)a a} with the exception 
of the singular points: 

sk = a  +ink, k E { 1 , 2 , .  . . , m } ,  

where for all k,  f l k  E R; a E R; m is a positive integer; and where a, m are finite. Now 
let 

n 

f z k ( s ) =  ln(s -sk) C cuk(s - - ~ k ) ~ + ~ ,  

Rk(s)=ln(s-sk) C c , k ( s - s ~ ) * " k ,  

where it is assumed that p is a non-negative integer and where 

u = o  

n 

u = o  

V k  E { 1,2 ,  . . . , m }  : Re(Aok) < Re(A lk) . . . < Re ( A n k ) ,  

V(Y, k ) E { O ,  1 , 2 , .  . . , n } X { l , 2 , .  . . , m}:A.k&{O, 1 , 2 , .  . .}. 
Moreover, let 

n 

flk(6) = exp(skl') (Cuk/r(-A~k))t-*~~-', 
u = o  

Now consider the asymptotic behaviours 

f(s) - J,k (s), f o r s + s k , V k ~ { l , 2 , ,  , . ,m}, 64.3) 

which are supposed to hold for some j E {1,2,3}; theorems 1,  2, 3 to be quoted 
establish conditions under which (A.2) implies (A.3) or conversely (A.3) implies 
(A.2). 

The theorems are slightly revised versions of Doetsch (1955, Satz 1,  chap. 4 ,  9 2; 
Sutz 1,  chap. 7 ,  9 3; Satz 2, chap. 7, 0 2). 
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Theorem 1 .  
suppose that 

Let f :  [0, +CO)+ R be piecewise 
a parameter E > 0 exists such that 

continuous. For some j E {1,2,3} 

for 6 + +CO, (A.4) 

where 1 < m < +CO. Then f ( s )  = cm exp(-st)f([) d6 has abscissa of convergence a. 
Moreover, the function 

admits an analytic continuation on the strip {a - E C Re(s) s a} (with no singularities 
there). 

Conversely we have the following theorem. 

Theorem 2. Suppose that: 
( a )  f: [0 ,  +CO)+ R is piecewise continuous, and f ( s )  = Jim exp(-s[)f([) d t  has the 

( b )  for w E R, limloi++,(a/aw)"f(a + iw) = 0, V R  E {1,2, . . .); 
( c )  a parameter p > a exists such that limlol++m f ( y  + iw) = 0, V y  E [a, p ] ,  uni- 

( d )  for some j E {1,2,3}, &)-defined by equation (A.S)-is continuous on 

( e )  The derivatives ( a / d ~ ) ~ g ( a  +iw) exist for all w E R and for all R ~ ( 1 ,  2, . . .}. 

finite abscissa of convergence a ; 

formly; 

{Re(s) b a}; 

Then 

where p is any positive parameter. 

The basic result of theorem 2 can be presented in a different form: requirements ( b )  
and (c) are omitted, but an analytical continuation for f to the left of the abscissa of 
convergence is performed. Indeed for a given 1,4 E (ir, r) let 

~ ~ ( 4 )  = {s E C:  $r c larg(s - sk)l s CL and Is - s k /  > 01 

s($)= n Sk($). 
k d 1 . 2 ,  ..., m) 

Then we have the following theorem. 

Theorem 3. Under assumption ( a )  of theorem 2, suppose that: 
( b )  a parameter $ E ($r, r) exists such that f admits an analytical continuation on 

S($) ;  moreover limlsl++oo f(s) = 0 uniformly with respect to arg(s) with s E 

(c) for some j E {1,2,3} and for each k ~ { 1 , 2 , .  . . , m},  equation (A.3) holds 
S(S); 

uniformly with respect to arg(s - sk) with 0 c (arg(s - sk)I s $. 
Then (A.2) holds. 
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On comparing the different forms which the asymptotic results (A.2), (A.3) take in 
theorems 1, 2, 3 we observe: 

(i) Result (A.6) of theorem 2 provides a sharp estimate of the asymptotic 
behaviour of the error e ( [ )  = f ( [ ) - x r S l  f i k ( [ )  whereas theorem 3 provides 
limited information on the error’s properties. 

(ii) Assumption ( d )  of theorem 2 is strictly connected to assumption (c) of 
theorem 3; hence it is connected to the asymptotic law (A.3). It should be 
noted that in (c) of theorem 3 equation (A.3) is required to hold for larg(s - 
sk)I s (1, with (1, > $v whereas ( d )  of theorem 2 corresponds to the case (1, = fr. 
However in theorem 2 further requirements are imposed on the ‘error’ $(s). 

Appendix 2. The Euler algorithm for a retarded ordinary differential equation 

This appendix summarises some pertinent results from Feldstein’s dissertation (1964) 
in which the RODE initial value problem is considered: 

Y (0) = Y 0 E R, 0 S C Y ( X ) S  x ,  O S X S l ,  

Here CY is an assigned function. Let 

h = l / N  (N positive integer), 

xn = nh (A.8) 

4(n  1 = [a ( x n  ) /h l  r ( n  = CY ( x n ) / h  - 4 (n 

where [77] denotes the integer part of 77. Then Feldstein’s ‘customary Euler algorithm’ 
is 

20 = Y (0 )  z n  = Y q ( n ) + h r ( n l f q ( n )  04.9) 

f n  = f ( X n ,  Y n ,  z n )  (A. 10) 

Y o = Y ( O )  y n + l =  Y n  + h f n .  (A. 11) 

The main result is given in the following theorem (Feldstein 1964, theorem 1.1): 

Theorem. Let CY E Cp([O, 11, R), f~ Cp([O, 11 X 1w X 54, R) where p is a positive integer. 
Moreover, suppose that f obeys the global Lipschitz condition /f(x, y ,  2 ) - f ( x ,  j j ,  2)l< 
L(/y - Yl+ 12 - fl), V(x,  y ,  z ,  j j ,  f ) ~  [0,  11 X R4, where 0 < L C +CO. Then the RODE 

problem (A.7) admits an unique solution y of class Cpcl([O, 11, R). Moreover, the 
customary Euler algorithm (A.8) to (A . l l )  converges uniformly to y on [0, 11 for 
N++CO. 

We wish to observe that this result can be easily generalised to the case in which 
y ,  f are complex valued. 
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